Advanced Nonaxisymmetric Endwall Contouring for Axial Compressors by Generating an Aerodynamic Separator—Part I: Principal Cascade Design and Compressor Application

Author:

Dorfner Christian1,Hergt Alexander1,Nicke Eberhard1,Moenig Reinhard1

Affiliation:

1. German Aerospace Center (DLR), Institute of Propulsion Technology, 51147 Cologne, Germany

Abstract

Modern methods for axial compressor design are capable of shaping the blade surfaces in a three-dimensional way. Linking these methods with automated optimization techniques provides a major benefit to the design process. The application of nonaxisymmetric contoured endwalls is considered to be very successful in turbine rotors and vanes. Concerning axial compressors, nonaxisymmetric endwalls are still a field of research. This two-part paper presents the recent development of a novel endwall design. An aerodynamic separator, generated by a nonaxisymmetric endwall groove, interacts with the passage vortex. This major impact on the secondary flow results in a significant loss reduction because of load redistribution, reduction in recirculation areas, and suppressed corner separation. The first paper deals with the development of the initial endwall design using a linear compressor cascade application. A brief introduction of the design methods is provided, including the automated optimization and the 3D process chain with a focus on the endwall contouring tool. Hereafter, the resulting flow phenomena and physics due to the modified endwall surface are described and analyzed in detail. Additionally, the endwall design principal is transferred to an axial compressor stage. The endwall groove is applied to the hub and casing endwalls of the stator, and the initial numerical investigation is presented. For highly loaded operating points, the flow behavior at the hub region can be improved in accord with the cascade results. Obviously, the casing region is dominated by the incoming tip vortex generated by the rotor and still remains an area for further investigations concerning nonaxisymmetric endwall contouring.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3