The Influence of Material Properties and Confinement on the Dynamic Penetration of Alumina by Hard Spheres

Author:

Wei Z.1,Evans A. G.2,Deshpande V. S.3

Affiliation:

1. Department of Materials, University of California, Santa Barbara, CA 93106

2. Department of Materials, and Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106

3. Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106

Abstract

Abstract The ability of a ceramic to resist penetration by projectiles depends, in a coupled manner, on its confinement and its mechanical properties. In order to explore the fundamental inter-relationships, a simulation protocol is required that permits the microstructure and normative properties (hardness and toughness) to be used as input parameters. Potential for attaining this goal has been provided by a recent constitutive model, devised by Deshpande and Evans (DE) [2008, “Inelastic Deformation and Energy Dissipation in Ceramics: A Mechanics-Based Dynamic Constitutive Model,” J. Mech. Phys. Solids, 56, pp. 3077–3100] that incorporates the contributions to the inelastic strain from both plasticity and microcracking. Before implementing the DE model, various comparisons with experimental measurements are required. Previously, the model has been successfully used to predict the quasistatic penetration of alumina by hard spheres. In the present assessment, simulations of the dynamic penetration of confined alumina cylinders are presented as a function of microstructure and properties and compared with literature measurements of the ballistic mass efficiency. It is shown that the model replicates the measured trends with hardness and grain size. Motivated by this comparison, further simulations are used to gain a basic understanding of the respective roles of plasticity and microcracking on penetration and to elucidate the phenomena governing projectile defeat.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3