Thermal Modeling of the Human Eye as a Porous Structure

Author:

Shafahi Maryam1,Vafai Kambiz1

Affiliation:

1. University of California, Riverside, Riverside, CA

Abstract

Human eye is one of the most sensitive parts of the body when exposed to radiation effects. Since there is no barrier (such as skin) to protect the eye against the absorption of the external thermal waves, radiation can readily interact with cornea. On the other hand, lack of blood flow in the interior part of the eye makes it more vulnerable compared to other organs even in the case of weak heat interaction. Further, blood flow circulation alone cannot establish thermal equilibrium between the eye and body organs effectively. There are limitations in measuring human eye temperature profile experimentally due to the required invasive procedures in monitoring the inner layers. Therefore, there is a need to develop an accurate model to represent the eye structure and energy transport through it. Thermal modeling of the eye is important to investigate the effect of external heat sources as well as in predicting the abnormalities within the eye. Modeling of heat transport through the human eye has been the subject of interest for years, but the application of porous media models in this field is new and will be one of the themes of this study. In this work, iris/sclear is considered as a porous medium and energy transport is modeled using the tissue local thermal equilibrium equations. The eye is assumed to include six different parts: cornea, anterior chamber, posterior chamber, iris/sclera, lens and vitreous. A two-dimensional finite element simulation will be performed. Results are shown in terms of transient corneal surface temperature, isothermal lines in different regions and local temperature of pupillary axis. Effects of external radiation sources, convection coefficient of the surrounding air, blood temperature, blood convection coefficient and ambient temperature on different regions of the eye are also investigated.

Publisher

ASMEDC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Human Eye Response to Thermal Disturbances;Journal of Heat Transfer;2010-09-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3