Hydrodynamics and Interfacial Surfactant Transport in Vascular Gas Embolism

Author:

Eckmann David M.1,Zhang Jie2,Ayyaswamy Portonovo S.3

Affiliation:

1. Department of Anesthesiology and Center for Medical and Engineering Innovation, The Ohio State University, 410 West 10th Avenue, N429 Doan Hall, Columbus, OH 43210

2. Department of Mechanical Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104

3. Department of Mechanical and Aerospace Engineering, Samueli School of Engineering, University of California, Los Angeles, CA 90095

Abstract

Abstract Vascular gas embolism—bubble entry into the blood circulation - is pervasive in medicine, including over 340,000 cardiac surgery patients in the U.S. annually. The gas–liquid interface interacts directly with constituents in blood, including cells and proteins, and with the endothelial cells lining blood vessels to provoke a variety of undesired biological reactions. Surfactant therapy, a potential preventative approach, is based on fluid dynamics and transport mechanics. Herein we review literature relevant to the understanding the key gas–liquid interface interactions inciting injury at the molecular, organelle, cellular, and tissue levels. These include clot formation, cellular activation, and adhesion events. We review the fluid physics and transport dynamics of surfactant-based interventions to reduce tissue injury from gas embolism. In particular, we focus on experimental research and computational and numerical approaches involving how surface-active chemical-based intervention. This is based on surfactant competition with blood-borne or cell surface-borne macromolecules for surface occupancy of gas–liquid interfaces to alter cellular mechanics, mechanosensing, and signaling coupled to fluid stress exposures occurring in gas embolism. We include a new analytical approach for which an asymptotic solution to the Navier–Stokes equations coupled to the convection-diffusion interaction for a soluble surfactant provides additional insight regarding surfactant transport with a bubble in non-Newtonian fluid.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3