Affiliation:
1. Department of Mechanics and Structures, University of California, Los Angeles, Calif.
Abstract
A refined structural theory is presented which accurately models the static and dynamic behavior of laminated orthotropic plates. The refined theory extends classical theory to include transverse shear, transverse normal, and quadratic displacement terms in the kinematic assumption. Hamilton’s principle is used to formulate the displacement equations of motion with appropriate boundary and initial conditions. The composite correction factors kij are introduced in a manner consistent with their indifference to choice of reference surface, and are determined by a procedure in which plane wave solutions for the plate are adjusted to match corresponding exact solutions. Examples of homogeneous isotropic, orthotropic, and laminated orthotropic plates are presented to show the capability of the theory to accurately model the lower branches of the frequency spectrum of these plates for wavelength-thickness ratios greater than unity.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
168 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献