Asymptotic Parameter Estimation via Implicit Averaging on a Nonlinear Extended System

Author:

Chatterjee Anindya1,Cusumano Joseph P.2

Affiliation:

1. Mechanical Engineering, Indian Institute of Science, Bangalore, 560012, India

2. Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802, USA

Abstract

We present an observer for parameter estimation in nonlinear oscillating systems (periodic, quasiperiodic or chaotic). The observer requires measurements of generalized displacements. It estimates generalized velocities on a fast time scale and unknown parameters on a slow time scale, with time scale separation specified by a small parameter ε. Parameter estimates converge asymptotically like e−εt where t is time, provided the data is such that a certain averaged coefficient matrix is positive definite. The method is robust: small model errors and noise cause small estimation errors. The effects of zero mean, high frequency noise can be reduced by faster sampling. Several numerical examples show the effectiveness of the method.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Reference22 articles.

1. Chatterjee, A., and Cusumano, J. P., 1999, “Parameter Estimation in a Nonlinear Vibrating System Using an Observer for an Extended System,” ASME Paper No. DETC99/VIB-8067 (available on CDROM).

2. Bard, Y., 1974, Nonlinear Parameter Estimation, Academic Press, Orlando, FL.

3. Jezequel, L., and Lamarque, C. H., (eds), 1992, Euromech 280, Proc. of Int. Symp. on Identification of Nonlinear Mechanical Systems from Dynamic Tests, Ecully, France, 1991, A. A. Balkema, Rotterdam, Netherlands.

4. Srinath, M. D., Rajasekaran, P. K., and Viswanathan, R., 1996, Introduction to Statistical Signal Processing With Applications, Prentice-Hall, NJ (Indian Reprint published by Prentice-Hall of India, New Delhi, 1999).

5. Masri, S. F., and Caughey, T. K., 1979, “A Nonparametric Identification Technique for Nonlinear Dynamic Problems,” ASME J. Appl. Mech., 46, pp. 433–447.

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Parameter Identification in Dynamic Systems Using the Homotopy Optimization Approach;Identification for Automotive Systems;2012

2. Parameter identification in dynamic systems using the homotopy optimization approach;Multibody System Dynamics;2011-05-18

3. Advanced Strategies for Nonlinear System Identification;Advanced Nonlinear Strategies for Vibration Mitigation and System Identification;2010

4. ACCNT—A Metallic-CNT-Tolerant Design Methodology for Carbon-Nanotube VLSI: Concepts and Experimental Demonstration;IEEE Transactions on Electron Devices;2009-12

5. Probabilistic Analysis and Design of Metallic-Carbon-Nanotube-Tolerant Digital Logic Circuits;IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems;2009-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3