Ultrasmart: Developments in Ultrasonic Flaw Detection and Monitoring for High Temperature Plant Applications

Author:

Atkinson Ian1,Gregory Chris2,Kelly Stephen P.3,Kirk Katherine J.4

Affiliation:

1. KANDE International Ltd., Knutsford, UK

2. Phoenix Inspection Services Ltd., Warrington, UK

3. Doosan Babcock Engineering Ltd., Renfrew, Scotland

4. University of Paisley, Paisley, Scotland

Abstract

Plant in the power generation, petrochemical and metals processing industries is subject to increasingly onerous operational and regulatory requirements. Where plant that operates at high temperature is involved, the costs associated with shutdown for planned or unplanned inspection to meet these requirements can be particularly high. The ability to perform condition monitoring or flaw detection at on-line plant temperatures would enable plant to remain in operation for longer periods, reduce the risk of damage from thermal cycling associated with periodic shutdowns and allow shutdowns to be completed more quickly. The associated minimizing of the loss of revenue caused by frequent and lengthy shutdowns is a highly attractive proposition to the plant operators. This paper reports on progress in the Ultrasmart Project, which is being undertaken by a consortium of UK companies and aims to address the problems associated with performing ultrasonic inspection on pressure vessels and piping at temperatures exceeding ∼350°C. A brief review of the state of current industry capabilities is given and then details of the developments investigated within Ultrasmart are reported and discussed. These include: • Liquid cooled transducers and automated scanning mechanisms suitable for deployment on components with surface temperatures up to ∼500°C. • Permanently mounted piezoelectric transducers suitable for long term flaw growth or component thickness monitoring at temperatures up to ∼750°C. • Techniques, procedures and protocols necessary to achieve reliable and quantifiable inspection capability at high temperatures. • Use of a novel non-resonant thin film Aluminum Nitride (AlN) transducer for in-situ component monitoring.

Publisher

ASMEDC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3