Automatic Facial Feature Extraction for Predicting Designers' Comfort With Engineering Equipment During Prototype Creation

Author:

Bezawada Shruthi1,Hu Qianyu1,Gray Allison2,Brick Timothy2,Tucker Conrad1

Affiliation:

1. Industrial and Manufacturing Engineering, The Pennsylvania State University, State College, PA 16802 e-mail:

2. Human Development and Family Studies, The Pennsylvania State University, State College, PA 16802 e-mail:

Abstract

Designers frequently utilize engineering equipment to create physical prototypes during the iterative concept generation and prototyping phases of design. Currently, evaluating designers' efficiency during prototype creation is a manual process that either involves observational or survey based approaches. Real-time feedback when using engineering equipment has the potential to enhance designers' efficiency or mitigate potential injuries that may result from incorrect use of equipment. Toward an automated approach to addressing these challenges, the authors of this work test the hypotheses that (i) there exists a difference in designers' comfort levels before and after they use a piece of engineering prototyping equipment and (ii) a machine learning model predicts the level of comfort a designer has while using engineering prototyping equipment with accuracies greater than random chance. It has been shown that the level of comfort that an individual has while completing a task impacts their performance. The authors investigate whether automatic tracking of designers' facial expressions during prototype creation predicts their level of comfort. A study, involving 37 participants using various engineering equipment, is used to validate the approach. The support vector machine (SVM) regression model yielded a range of R squared values from 0.82 to 0.86 for an equipment-specific model. A general model built to predict comfort level across all engineering equipment yielded an R squared value of 0.68. This work has the potential to transform the manner in which design teams utilize engineering equipment toward more efficient concept generation and prototype creation processes.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mapping Novice Designer Behavior to Design Fixation in the Early-Stage Design Process;Journal of Mechanical Design;2024-03-05

2. Accounting for Prediction Uncertainty from Machine Learning for Probabilistic Design;2023 3rd International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET);2023-05-18

3. Design the Future with Emotion: Crucial Cultural Perspectives;Understanding Innovation;2023

4. Cloud automatic mechanical equipment based on D–T fuzzy control and internet of things;International Journal of System Assurance Engineering and Management;2021-11-29

5. Recognition of Design Fixation via Body Language Using Computer Vision;Mathematical Problems in Engineering;2021-08-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3