Affiliation:
1. University of the Republic Facultad de Ingeniería, , Julio Herrera y Reissig 565, 11300 Montevideo , Uruguay
2. Universidad de la República Facultad de Ingeniería, , Julio Herrera y Reissig 565, 11300 Montevideo , Uruguay
Abstract
Abstract
This study assesses the feasibility of installing concentrated solar power plants in subtropical South America, particularly in Uruguay, by numerical simulations. Parabolic trough and solar power tower technologies are examined. A comprehensive literature analysis is conducted in order to evaluate initial investment, operation, and maintenance costs. Simulation models are validated in order to ensure results accuracy. The study is focused on the optimization of solar fields and storage sizes for five locations. The target set is to minimize the levelized cost of energy. In addition, energy losses and efficiencies are compared between parabolic trough and solar power tower technologies. Salto region in Uruguay is identified as the most suitable location for concentrated solar power projects. Optimized plants yield solar multiples of 3 or higher for solar power tower and around 4 for parabolic trough, with storage sizes ranging from 12 to 15 h, depending on the location. In Salto, the levelized cost of energy ranges from 148 to 175 USD/MW h for 110 MW solar power tower and from 169 to 220 USD/MW h for 55 MW parabolic trough plants, considering different investment cost scenarios. Levelized cost of energy is comparable for other locations, with a slight increase of approximately 10% for the least favorable location, Rocha. This work shows that while not yet competitive with photovoltaic or wind technologies, concentrated solar power plants show promise against fossil-fueled power plants and are expected to decrease further in cost.
Reference33 articles.
1. Renewables 2019 Global Status Report;REN21,2019
2. Renewable Power Generation Costs in 2021;IRENA,2022
3. A Comprehensive Review of State-of-the-Art Concentrating Solar Power (CSP) Technologies: Current Status and Research Trends;Islam;Renew. Sustain. Energy Rev.,2018
4. Renewable Power Generation Costs in 2018;IRENA,2019
5. Año Meteorológico Típico Para Aplicaciones de Energía Solar - AMTUes Series Horarias Típicas Para 5 Sitios Del Uruguay. Version 2.4;Alonso,2016