Modeling and Testing of After-Treatment Devices

Author:

Allam Sabry1,Åbom Mats1

Affiliation:

1. The Marcus Wallenberg Laboratory for Sound and Vibration Research, KTH, SE-10044 Stockholm, Sweden

Abstract

Driven by emission regulations in the US and the EU exhaust systems on new diesel engines are equipped with both a catalytic converter (CC) and a diesel particulate filter (DPF). The CC and DPF are normally placed after each other in an expansion chamber, to create a complete after-treatment device (ATD) to reduce the exhaust pollutants. The ATD unit can also affect the acoustical performance of an exhaust system. In this paper, an acoustic model of a complete ATD for a passenger car is presented. The model is made up of four basic elements: (i) straight pipes; (ii) conical inlet/outlet; (iii) CC unit, and (iv) DPF unit. For each of these elements, a two-port model is used and, with the exception of the DPF unit, known models from the literature are available. For the DPF unit, a new model suggested by the authors has been used. Using the models, the complete acoustic two-port model for the investigated ATD unit has been calculated and used to predict the sound transmission loss. The predictions have been compared to experimental data taken at cold conditions for various flow speeds and show a good agreement.

Publisher

ASME International

Subject

General Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multi-objective optimization of a diesel particulate filter: an acoustic approach;Particulate Science and Technology;2021-08-23

2. A transfer matrix approach for structural–acoustic correspondence analysis of diesel particulate filter;Advances in Mechanical Engineering;2017-09

3. Acoustic Modeling of Charge Air Coolers;Journal of Vibration and Acoustics;2017-05-30

4. Simulation of the particle oxidation catalyst POC acoustics;Noise Control Engineering Journal;2014-09-01

5. The Proper Use of Plane Wave Models for Muffler Design;SAE International Journal of Passenger Cars - Mechanical Systems;2014-04-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3