An Analytical and Experimental Investigation of Turbulent Flow in Bearing Films Including Convective Fluid Inertia Forces

Author:

Smalley A. J.1,Vohr J. H.2,Castelli V.3,Wachmann C.1

Affiliation:

1. Mechanical Technology Inc., Latham, N. Y.

2. Rensselaer Polytechnic Institute, Troy, N. Y.

3. Columbia University, New York, N. Y.

Abstract

A means of handling both fluid film turbulence and the effects of fluid convective inertia in bearing films has been developed. The analysis employs a number of simplifying assumptions but has proved quite successful in the prediction of experimentally measured pressures. In this analysis turbulence is treated by means of turbulent viscosity correction factors. Convective inertia is accounted for by convective derivatives of mean fluid velocities averaged over the bearing film. Direct numerical solution of simultaneous equations representing conservation of momentum and fluid continuity is employed. The analysis developed is applied to pad bearings of arbitrary surface geometry, and has been incorporated in a computer program to calculate the film pressures developed in such bearings. Results from this program are compared with experimental pressure profile measurements made on a 12-in. dia, four pad, shrouded step journal bearing with silicone fluids as test lubricants. Good agreement is obtained for both concentric and eccentric operation.

Publisher

ASME International

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3