A Conjugate Numerical-RC Network Prediction of the Transient Thermal Response of a Power Amplifier Module in Handheld Telecommunication

Author:

Lee Tien-Yu Tom1,Chiriac Victor A.1,Stout Roger2

Affiliation:

1. Freescale Semiconductor, Inc., Tempe, AZ

2. On Semiconductor, Inc., Phoenix, AZ

Abstract

A study compares two different approaches (numerical vs. RC Network) used to predict the transient thermal response of a Radio Frequency (RF) Power Amplifier (PA) module at a given duty cycle (power on and off periodically) in handheld telecommunication. In the numerical approach, commercial software is used to predict device’s transient thermal response at any arbitrary time of interest for a given set of material properties. To predict the peak and valley temperatures of the device when it reaches steady state, a new methodology is presented, combining the steady state temperature at an averaged power and the temperature difference between single-pulse (at averaged power) and a periodical curve at peak or valley. For multiple heat sources, a linear superposition theory applies. Temperature at any given junction and at any specific time, is a linear superposition of its response to the power applied at all junctions (including itself) summed up over all preceding time history. In the analytical Resistor-Capacitor (RC) network approach, the R’s (thermal resistances) and τ’s (time constants) in a single-pulse are predicted using linear regression curve fitting techniques. For a single-pulse RC model, superposition methodology is applied to solve the transient response in any waveform (single or multiple waves in a cycle). A formulated spreadsheet performs the calculation, with inputs such as pulse width, waiting time (before the pulse is initiated), pulse magnitude and period. The peak and valley temperatures at steady state for a single square wave per cycle are predicted through closed form solutions. For multiple square waves per cycle, individual wave responses must be added together throughout the entire range of the steady state cycle to determine the locations (time) of the peaks and valleys. In order to compare these two approaches, two case studies were conducted on a PA module for a cell phone application: at 12.5% duty cycle and at three-square wave per cycle. Results show good agreement between the numerical and RC model approaches, either at any arbitrary time or at “peak and valley” in steady state. Although the RC network method requires an intermediate creation of the RC model from single pulse numerical solutions (or from experimental measurement), the total time and effort to achieve similar results as compared to the direct numerical method may be considerably reduced. Further, once created, the RC model permits essentially unlimited flexibility and extremely rapid computation for arbitrary power cycling, whereas the direct numerical approach requires “starting over” with every different power cycling description of interest.

Publisher

ASMEDC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3