Stress Intensity Factors for Semi-Elliptical Surface Cracks With Flaw Aspect Ratio Beyond the ASME XI Limit

Author:

Malekian Christian1,Wyart Eric2,Savelsberg Michael1,Teughels Anne1,Fouquet Pierre-Eric3,Minjauw Nicolas4,Wendling Audrey2

Affiliation:

1. Tractebel Engineering, Brussels, Belgium

2. Cenaero, Gosselies, Belgium

3. Enim, Metz, France

4. Ecam, Brussels, Belgium

Abstract

Most of the literature about fracture mechanics considers cracks having an elliptical shape with a flaw aspect ratio a/l lower or equal to 0.5 where ‘a’ is the crack depth and ‘l’ the total length of the crack. This is also case in the ASME XI Appendix A where Stress Intensity Factors KI formulations are given for a large range of crack depths and for a flaw aspect ratio a/l between 0 and 0.5. The limitation to 0.5 corresponds to a semi-circular shape for surface cracks and to a circular shape for subsurface cracks. This limitation does not seem to be inspired by a theoretical limitation nor by a computational limit. Moreover, it appears that limiting the ratio a/l to 0.5 may generate in some cases some unnecessary conservatism in flaw analysis. The present article specifically deals with the more unusual narrow cracks having a/l >0.5, in the case of surface cracks in infinite flat plates. Several Finite-Elements calculations are performed to compute KI for a large range of crack depths and for 4 typical load cases (uniform, linear, quadratic and cubic). The results can be presented with the same formalism as in the ASME XI Appendix A, such that the work can provide an extension of the ASME coefficients in table A-3320-1&2. By doing the study, one had the opportunity to compare the results obtained by two different Finite-Elements softwares (Systus and Ansys), each one with a different cracked mesh. In addition, a comparison has been made for some cases with results obtained by a XFEM approach (eXtended Finite-Element Method), where the crack does not need to be meshed in the same way as in classical Finite-Elements. The results indicate how the KI can be reduced when considering the real flaw aspect ratio instead of the conventional semi-circular flaw shape. They also show that, for specific theoretical stress distributions, it is not always possible to reduce the analysis of KI to only 2 points, namely the crack surface point and the crack deepest point. The crack growth evaluation of such unusual crack shape should still be investigated to verify whether simple rules can be established to estimate the evolution of the crack front.

Publisher

ASMEDC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3