Control of Final Part Dimensions in Polymer Extrusion Using a Variable-Geometry Die

Author:

Funke Lawrence W.1,Schmiedeler James P.2

Affiliation:

1. Mem. ASME Mechanical Engineering Department, Ohio Northern University, Ada, OH 45810 e-mail:

2. Fellow ASME Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556 e-mail:

Abstract

Parts made via polymer extrusion are currently limited to a constant cross section. Additionally, the process is difficult to control, so desired final part dimensions are often achieved via a manual trial-and-error approach to parameter adjustment. This work seeks to increase the capability of polymer extrusion by using iterative learning control (ILC) to regulate the final width of a rectangular part through changing the width of a simple variable-geometry die. Simulation results determine the appropriateness of the learning algorithm and gains to be used in experiment. A prototype die on a production extruder was used to demonstrate the effectiveness of the approach. These experiments achieved automated control over both gross change in shape and final part dimension when the puller speed was held constant, which has not been seen previously in the literature.

Funder

"Division of Civil, Mechanical and Manufacturing Innovation"

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Characterization and control of primary natural frequency of FDM ABS prints through printer parameters and STL file manipulation;The International Journal of Advanced Manufacturing Technology;2023-10-12

2. Auxiliary Equipment;Plastics Process Analysis, Instrumentation, and Control;2021-03-05

3. Augmented Reality, Cyber-Physical Systems, and Feedback Control for Additive Manufacturing: A Review;IEEE Access;2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3