Prediction of Friction Coefficients During Scratch Based on an Integrated Finite Element and Artificial Neural Network Method

Author:

Xie Haibo1,Wang Zhanjiang1,Qin Na1,Du Wenhao2,Qian Linmao1

Affiliation:

1. Tribology Research Institute, Department of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China

2. Institute of Machinery Manufacturing Technology, China Academy of Engineering Physics, Mianyang 621900, China

Abstract

Abstract An integrated finite element and artificial neural network method is used to analyze the impact of scratch process parameters on some variables related to elastoplastic deformation of titanium alloy. The elastoplastic constitutive parameters applied for scratch simulations are obtained from the nanoindentation experiments and finite element analysis. The validity of the finite element model of scratch is confirmed by comparing the friction forces from simulations to those from experiments. The input parameters of the artificial neural network are three scratch process parameters: tip normal force, tip radius, and shear friction coefficient. The outputs are four variables related to material deformation measured during scratch: scratch depth, elastic recovery height, plowing height, and plowing friction coefficient. The network is trained with pairs of input and output datasets generated by scratch simulations. The prediction results of the neural network are in agreement with the finite element results. The model provides assistance for the prediction and analysis of complex relationships between scratch process parameters and variables related to material deformation, and between the plowing friction coefficient and the relevant parameters. The results show the independence of scratch depth and the shear friction coefficient, and the positive relationships between the shear friction coefficient and plowing friction coefficient.

Funder

National Natural Science Foundation of China

Science Challenge Project

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3