Effect of Rotation on Leakage and Windage Heating in Labyrinth Seals With Honeycomb Lands

Author:

Nayak Kali Charan1

Affiliation:

1. Thermo-fluids Specialist, Systems Design, Rolls-Royce India Pvt. Ltd., Manyata Embassy Business Park, Bangalore, Karnataka 560045, India

Abstract

Abstract One of the basic assumptions of the traditional labyrinth seal leakage calculation is that rotation has minimal or no effect on seal leakage. With the advancement of gas turbine technology, to achieve high performance, seals are run at tight clearances and very high rotational speeds. Due to tight clearances and high speeds, the temperature rise across the seal can be very significant in reducing the seal flow due to the Raleigh line effect. The influence of rotation on the flow dynamics inside the seal region has not previously been studied in detail. In this study the effect of rotation is studied for smooth and honeycomb cells at various seal clearances and rotational speeds. The main objective of this study is to understand the influence of rotation on seal leakage. However, the effect of rotation on swirl and windage heating is also investigated. For this study, the author leveraged the validated 3D computational fluid dynamics methodology for a stationary and rotating labyrinth from previous studies. However, before performing studies on rotation, the numerical modeling approach is benchmarked against experimental data on rotation with smooth stator lands by Waschka et al. The numerical predictions show good agreement with the experimental data. As the rotational speed increases, seal discharge coefficient remains constant until a critical rotational speed is reached. This critical speed is shown to depend non-dimensionally on the ratio of Taylor number to Reynolds number (Ta/Re). As Ta/Re increases above 0.1, seal discharge coefficient can reduce by up to 25% depending on the seal clearance, fin tip speed, and honeycomb cell size.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference17 articles.

1. Stromungsvorgange in Ringformigen Spalten and Ihre Beziehung Zum Poiseuilleschen Gesetz,1907

2. Untersuchungen Fiber Das Verhalten Der Schaufelspaltdichtungen in Gegenlauf-Dampfturbinen,1933

3. On the Pressure Loss of Flow Between Rotating Co-Axial Cylinders With Rectangular Grooves;Bull. ISME,1962

4. Incompressible Flow in Stepped Labyrinth Seals,1985

5. Aerodynamic Performance of Conventional and Advanced Design Labyrinth Seals With Solid-Smooth, Abradable and Honeycomb Lands,1977

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3