Torque Converter Capacity Improvement Through Cavitation Control by Design

Author:

Liu Cheng1,Wei Wei2,Yan Qingdong2,Weaver Brian K.1

Affiliation:

1. Rotating Machinery and Controls Laboratory, Mechanical and Aerospace Engineering Department, University of Virginia, 122 Engineer's Way, Charlottesville, VA 22904-4746 e-mail:

2. National Key Laboratory for Vehicular Transmission, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China e-mail:

Abstract

Heavy cavitation in torque converters can have a significant effect on hydrodynamic performance, particularly with regards to the torque capacity. The objective of this study is to therefore investigate the effects of pump and turbine blade geometries on cavitation in a torque converter and improve the torque capacity without increasing the torus dimension. A steady-state homogeneous computational fluid dynamics (CFD) model was developed and validated against test data at stall operating condition. A full flow passage with a fixed turbine-stator domain was used to improve the convergence and accuracy of the cavitation model. Cavitation analysis was carried out with various pump and turbine blade geometries. It was found that there is a threshold point for pump blade exit angle in terms of its effect on torque capacity due to heavy cavitation. Further increasing the pump blade exit angle past this point will worsen cavitation condition and decrease torque capacity. The study also shows that a higher turbine blade exit angle, i.e., lower stator incidence angle, could reduce flow separation at the stator suction surface and consequently abate cavitation. A base high-capacity torque converter was upgraded utilizing the cavitation model, and the resulting design exhibited a 20.7% improvement in capacity constant without sacrificing other performance metrics.

Publisher

ASME International

Subject

Mechanical Engineering

Reference17 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3