Effect of Squealer Cavity Depth and Oxidation on Turbine Blade Tip Heat Transfer

Author:

Bunker Ronald S.1,Bailey Jeremy C.1

Affiliation:

1. General Electric Company, Niskayuna, NY

Abstract

An experimental study has been performed to investigate the effect of squealer cavity depth on the detailed distribution of convective heat transfer coefficients of a turbine blade tip surface. This paper presents full surface information on heat transfer coefficients within a blade cascade which develops an appropriate pressure distribution about an airfoil blade tip and shroud model. A stationary blade cascade experiment has been run consisting of three airfoils, the center airfoil having a variable tip gap clearance. The airfoil models the aerodynamic tip section of a high pressure turbine blade with inlet Mach number of 0.21, exit Mach number of 0.74, pressure ratio of 1.41, Reynolds number of 2.8•106, and total turning of about 100 degrees. The cascade inlet turbulence intensity level is 9%. Tip surface heat transfer coefficient distributions are first shown for a flat, square-edge tip with a clearance gap of 2.03 mm. Heat transfer distributions are then shown for full-perimeter squealer tip cavities having the same clearance gap above the squealer rim, and clearance-to-cavity depth ratios from 0.67 to 2. Regionally averaged heat transfer coefficients are analyzed to discern a relationship between tip heat transfer and cavity depth. Further tests demonstrate the effect of partial squealer rim oxidation, or material loss, on the surface heat transfer distributions.

Publisher

American Society of Mechanical Engineers

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effect of wear damage on aero-thermal performance of the film-cooled squealer tip in a turbine stage;Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy;2023-04-26

2. Effect of Film Position on the Flow and Heat Transfer Characteristics of Full-Ribbed Rotor Tip;Frontiers in Energy Research;2022-02-22

3. Effect of cavity depth on thermal performance of a cooled blade tip under rotation;International Journal of Heat and Mass Transfer;2019-11

4. Performance Robustness of Turbine Squealer Tip Designs Due to Manufacturing and Engine Operation;Journal of Propulsion and Power;2017-05

5. On the Computations of Double Squealer and Flat Gas Turbine Blades Tips;54th AIAA Aerospace Sciences Meeting;2016-01-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3