Autoignition Characteristics of Gaseous Fuels at Representative Gas Turbine Conditions

Author:

Goy C. J.1,Moran A. J.1,Thomas G. O.2

Affiliation:

1. Rolls-Royce plc, Coventry, United Kingdom

2. University of Wales, Aberystwyth, Ceredigion, United Kingdom

Abstract

The autoignition properties of gas turbine fuels have been studied for many years and by numerous researchers. The advent of ultra low emission industrial gas turbines using lean premixed technologies has given rise to premixer designs with longer residence times. This, in conjunction with the ever-increasing pressure ratios of aeroderivative machines, leads to the potential for autoignition within premix ducts, and has therefore renewed the interest in this field. Although much has been published, data in the region of interest to high pressure ratio gas turbines is extremely sparse. Similarly, modelled autoignition delay times are not very accurate, as most reaction mechanisms were not generated to cover this range of conditions. Hence the uncertainties of autoignition delay times at gas turbine conditions are significant, thereby either imposing over-stringent design limitations or introducing risks of ignition occurrence in the early design process. A series of experiments have been carried out for methane and simulated natural gas fuels in the region of interest, using shock tubes as the test vehicle. The experimental technique was chosen to isolate only the chemical kinetic component of the autoignition delay time, without any additional delays due to mixing and heating of the test gases. Predictive correlations and a chemical kinetic model (the GRI mechanism) have also been used to predict autoignition delay times at the same conditions. The correlation between experiment and prediction has been shown to be poor at representative temperatures. This paper discusses some of the possible explanations for this poor agreement.

Publisher

American Society of Mechanical Engineers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3