Compressor Characteristics in Gas Turbine Performance Modelling

Author:

Jones Geoff1,Pilidis Pericles1,Curnock Barry2

Affiliation:

1. Cranfield University, Cranfield, Bedfordshire, United Kingdom

2. Rolls-Royce plc, Bristol, United Kingdom

Abstract

The choice of how to represent the performance of the fans and compressors of a gas turbine engine in a whole-engine performance model can be critical to the number of iterations required by the solver or indeed whether the system can be solved. This paper therefore investigates a number of compressor modelling methods and compares their relative merits. Particular attention is given to investigating the ability of the various representations to model the performance far from design point. It is noted that, for low rotational speeds and flows, matching on pressure ratio will produce problems, and that efficiency is a discontinuous function at these conditions. Thus, such traditional representations of compressors are not suitable for investigations of starting or windmilling performance. Matching on pressure ratio, Beta, the Crainic exit flow function and the true exit flow function is investigated. The independent parameters of isentropic efficiency, pressure loss, a modified pressure loss parameter, specific torque, and ideal and actual enthalpy rises are compared. The requirements of the characteristic choice are investigated, with regard to choosing matching variables and ensuring that relationships are smooth and continuous throughout the operating range of the engine.

Publisher

American Society of Mechanical Engineers

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Generating axial compressor maps to zero speed;Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy;2020-12-06

2. Body-force and mean-line models for the generation of axial compressor sub-idle characteristics;The Aeronautical Journal;2020-07-07

3. A Sub-idle Compressor Characteristic Generation Method With Enhanced Physical Background;Journal of Engineering for Gas Turbines and Power;2011-04-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3