Synergy-Based Gaussian Process Estimation of Ankle Angle and Torque: Conceptualization for High Level Controlling of Active Robotic Foot Prostheses/Orthoses

Author:

Eslamy Mahdy1,Alipour Khalil2

Affiliation:

1. Advanced Service Robots (ASR) Laboratory, Department of Mechatronics Engineering, Faculty of New Sciences and Technologies, University of Tehran, P.O. Box 1439957131, Tehran 1439957131, Iran

2. Advanced Service Robots (ASR) Laboratory, Department of Mechatronics Engineering, Faculty of New Sciences and Technologies, University of Tehran, P.O. Box 1439957131, Tehran 1439957131, Iran e-mail:

Abstract

Human gait is the result of a complex and fascinating cooperation between different joints and segments in the lower extremity. This study aims at investigating the existence of this cooperation or the so-called synergy between the shank motion and the ankle motion. One potential use of this synergy is to develop the high level controllers for active foot prostheses/orthoses. The central point in this paper is to develop a high level controller that is able to continuously map shank kinematics (inputs) to ankle angles and torques (outputs). At the same time, it does not require speed determination, gait percent identification, switching rules, and look-up tables. Furthermore, having those targets in mind, an important part of this study is to determine which input type is required to achieve such targets. This should be fulfilled through using minimum number of inputs. To do this, the Gaussian process (GP) regression has been used to estimate the ankle angles and torques for 11 subjects at three walking speeds (0.5, 1, and 1.5 m/s) based on the shank angular velocity and angle. The results show that it is possible to estimate ankle motion based on the shank motion. It was found that the estimation achieved less quality with only shank angular velocity or angle, whereas the aggregated angular velocity and angle resulted in much higher output estimation quality. In addition, the estimation quality was acceptable for the speeds that there was a training procedure before and when it was tested for the untrained speeds, the estimation quality was not as acceptable as before. The pros and cons of the proposed method are investigated at different scenarios.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3