Velocity and Turbulence Intensity Profiles Downstream of a Long Reach Endwall Double Row of Film Cooling Holes in a Gas Turbine Combustor Representative Environment

Author:

Cresci Irene1,Ireland Peter T.1,Bacic Marko1,Tibbott Ian2,Rawlinson Anton2

Affiliation:

1. University of Oxford, Osney Mead, UK

2. Rolls Royce PLC, Derby, UK

Abstract

The continuous demand from the airlines for reduced jet engine fuel consumption results in increasingly challenging high pressure turbine nozzle guide vane (NGV) working conditions. The capability to reproduce realistic boundary conditions in a rig at the combustor-turbine interaction plane is a key feature when testing NGVs in an engine-representative environment. A large scale linear cascade rig to investigate NGV leading edge cooling systems has been designed with particular attention being paid to creating engine representative conditions at the inlet to the NGVs. The combustor simulator replicates the main features of a rich-burn design including large dilution jets and extensive endwall film cooling. A three-dimensional computational domain including the entire combustor simulator has been created and RANS CFD simulations have been run in order to match Reynolds number and mainstream-to-coolant momentum flux ratio; velocity and turbulence measurements have been acquired at the NGV inlet plane at ambient temperature. In this engine-representative environment the authors focused their attention on the flow field downstream of different endwall film cooling holes configurations: three arrangements of a double row of staggered cylindrical holes (lateral pitch-to-diameter ratio of 2–3–6) and one with intersecting holes (intersecting angle of 90°) are experimentally and numerically analyzed. Velocity, turbulence intensity and integral length scales are predicted and measured for a density ratio of 1 and coolant-to-mainstream momentum flux of 6. A hot wire sensor was mounted on a two-axis traverse mechanism able to move the probe in the spanwise and lateral directions. Three slots allowed to reposition the traverse and take measurements at three downstream locations (stream-wise distance-to-diameter ratio of 4.2–9.2–14.2). The research confirmed the strong influence of the endwall coolant on the flow field at the NGV inlet plane and the hole spacing results a key parameter in managing the film development. Closer-spaced hole configurations can assure an effective film coverage. The integral length scales are strongly connected to the hole diameter and spacing. Intersecting holes can potentially reduce the amount of required coolant at a fixed pressure ratio, but they offer worst film performance than cylindrical holes. RANS simulations proved to be able to get the main trends shown by the measurements.

Publisher

American Society of Mechanical Engineers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3