Numerical Analysis of Honeycomb Labyrinth Seals: Cell Geometry and Fin Tip Thickness Impact on the Discharge Coefficient

Author:

Desando Alessio1,Rapisarda Andrea1,Campagnoli Elena1,Taurino Roberto21

Affiliation:

1. Politecnico di Torino, Turin, Italy

2. AvioAero, Rivalta di Torino, Italy

Abstract

The design of the newest aircraft propulsion systems is focused on environmental impact reduction. Extensive research is being carried out with the purpose of improving engine efficiency, enhancing crucial features, in order to decrease both fuel consumption and pollutant emissions. A lot of improvements to fulfill these objectives must be made, focusing on the optimization of the main engine parts through the utilization of new technologies. The leakage flow reduction in the turbo machinery rotor-stator interaction is one of the main topics to which numerous efforts are being devoted. Labyrinth seals, widely employed in the aerospace field thanks to their simple assembly process and maintenance, can be the means to achieve these objectives. This paper mainly focuses on the optimization of the labyrinth seal stator part, characterized, in modern Low Pressure Turbines (LPT), by a honeycomb cell pattern. The first phase of this study deals with the implementation and validation of a Computational Fluid Dynamics (CFD) numerical model, by using the experimental data available in the literature. Discharge coefficients obtained by numerical simulations, performed at different clearances and pressure ratios on both smooth and honeycomb non-rotating labyrinth seals, are presented and compared to the literature data. Then, for both convergent and divergent flow conditions, the effects on the discharge coefficient due to variations in several cell pattern parameters (i.e. cell diameter, depth and wall thickness) and fin tip thickness are shown. For these analyses the values of clearance and pressure ratio are set at a constant value.

Publisher

American Society of Mechanical Engineers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3