Efficient Computation of Thermoacoustic Modes in Annular Combustion Chambers Based on Bloch-Wave Theory

Author:

Mensah Georg A.1,Moeck Jonas P.1

Affiliation:

1. Technische Universität Berlin, Berlin, Germany

Abstract

Most annular combustors feature a discrete rotational symmetry so that the full configuration can be obtained by copying one burner–flame segment a certain number of times around the circumference. A thermoacoustic model based on the Helmholtz equation then admits special solutions of the so-called Bloch type that can be obtained by considering one segment only. We show that a significant reduction in computational effort for the determination of thermoacoustic modes can be achieved by exploiting this concept. The framework is applicable even in complex cases including a non-homogeneous temperature field and a frequency-dependent, spatially distributed flame response. A parametric study on a three-dimensional combustion chamber model is conducted using both the full scale chamber simulation and a one-segment model with the appropriate Bloch-type boundary conditions. The results for both computations are compared in terms of mode frequencies and growth rates as well as the corresponding mode shapes. This comparison demonstrates the benefits of the Bloch-wave based analysis. It is further shown that even the effect of circumferential asymmetries can be assessed based on computations of one burner–flame segment only by resorting to spectral perturbation theory.

Publisher

American Society of Mechanical Engineers

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Saturation of flames to multiple inputs at one frequency;Journal of Fluid Mechanics;2023-12-12

2. Calculation of the Thermoacoustic Stability of a Main Stage Thrust Chamber Demonstrator;Notes on Numerical Fluid Mechanics and Multidisciplinary Design;2020-10-27

3. Effects of Asymmetry on Thermoacoustic Modes in Annular Combustors: A Higher-Order Perturbation Study;Journal of Engineering for Gas Turbines and Power;2018-12-07

4. Acoustic Damper Placement and Tuning for Annular Combustors: An Adjoint-Based Optimization Study;Journal of Engineering for Gas Turbines and Power;2017-01-18

5. Uncertainty Quantification of Growth Rates of Thermoacoustic Instability by an Adjoint Helmholtz Solver;Journal of Engineering for Gas Turbines and Power;2016-08-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3