A Real-Time Degradation Model for Hardware in the Loop Simulation of Fuel Cell Gas Turbine Hybrid Systems

Author:

Zaccaria Valentina1,Traverso Alberto2,Tucker David1

Affiliation:

1. U.S. DOE National Energy Technology Laboratory, Morgantown, WV

2. Università di Genova, Genova, Italy

Abstract

The theoretical efficiencies of gas turbine fuel cell hybrid systems make them an ideal technology for the future. Hybrid systems focus on maximizing the utilization of existing energy technologies by combining them. However, one pervasive limitation that prevents the commercialization of such systems is the relatively short lifetime of fuel cells, which is due in part to several degradation mechanisms. In order to improve the lifetime of hybrid systems and to examine long-term stability, a study was conducted to analyze the effects of electrochemical degradation in a solid oxide fuel cell (SOFC) model. The SOFC model was developed for hardware-in-the-loop simulation with the constraint of real-time operation for coupling with turbomachinery and other system components. To minimize the computational burden, algebraic functions were fit to empirical relationships between degradation and key process variables: current density, fuel utilization, and temperature. Previous simulations showed that the coupling of gas turbines and SOFCs could reduce the impact of degradation as a result of lower fuel utilization and more flexible current demands. To improve the analytical capability of the model, degradation was incorporated on a distributed basis to identify localized effects and more accurately assess potential failure mechanisms. For syngas fueled systems, the results showed that current density shifted to underutilized sections of the fuel cell as degradation progressed. Over-all, the time to failure was increased, but the temperature difference along cell was increased to unacceptable levels, which could not be determined from the previous approach.

Publisher

American Society of Mechanical Engineers

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3