Affiliation:
1. U.S. DOE National Energy Technology Laboratory, Morgantown, WV
2. Università di Genova, Genova, Italy
Abstract
The theoretical efficiencies of gas turbine fuel cell hybrid systems make them an ideal technology for the future. Hybrid systems focus on maximizing the utilization of existing energy technologies by combining them. However, one pervasive limitation that prevents the commercialization of such systems is the relatively short lifetime of fuel cells, which is due in part to several degradation mechanisms. In order to improve the lifetime of hybrid systems and to examine long-term stability, a study was conducted to analyze the effects of electrochemical degradation in a solid oxide fuel cell (SOFC) model.
The SOFC model was developed for hardware-in-the-loop simulation with the constraint of real-time operation for coupling with turbomachinery and other system components. To minimize the computational burden, algebraic functions were fit to empirical relationships between degradation and key process variables: current density, fuel utilization, and temperature.
Previous simulations showed that the coupling of gas turbines and SOFCs could reduce the impact of degradation as a result of lower fuel utilization and more flexible current demands. To improve the analytical capability of the model, degradation was incorporated on a distributed basis to identify localized effects and more accurately assess potential failure mechanisms. For syngas fueled systems, the results showed that current density shifted to underutilized sections of the fuel cell as degradation progressed. Over-all, the time to failure was increased, but the temperature difference along cell was increased to unacceptable levels, which could not be determined from the previous approach.
Publisher
American Society of Mechanical Engineers
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献