Development of Highly Durable Thermal Barrier Coating by Suppression of Thermally Grown Oxide

Author:

Negami Masahiro1,Hibino Shinya1,Kawano Akihito1,Nomura Yoshimichi1,Tanaka Ryozo1,Igashira Kenichiroh1

Affiliation:

1. Kawasaki Heavy Industries, Ltd., 1-1, Kawasaki-Cho, Akashi City 673-8666, Japan e-mail:

Abstract

Durability of thermal barrier coating (TBC) systems is important because of recent rising of turbine inlet temperature (TIT) for improved efficiency of industrial gas turbine engines. However, high-temperature environment accelerates the degradation of the TBC as well as causes spalling of the top coat. Spalling of the top coat may be attributed to several factors, but evidently the growth of thermally grown oxide (TGO) should be considered as an important factor. One method for reducing the growth rate of TGO is to provide a dense α-Al2O3 layer at the boundary of the bond coat and top coat. This α-Al2O3 layer will suppress the diffusion of oxygen to the bond coat and consumption of aluminum of the bond coat is suppressed. In this study, we focused on thermal pre-oxidation of the bond coat as a means for forming an α-Al2O3 barrier layer that would be effective at reducing the growth rate of TGO, and we studied the suitable pre-oxidation conditions. In the primary stage, we analyzed the oxidation behavior of the bond coat surface during pre-oxidation heat treatment by means of in situ synchrotron X-ray diffraction (XRD) analysis. As a result, we learned that during oxidation in ambient air environment, in the initial stage of oxidation metastable alumina is produced in addition to α-Al2O3, but if the thermal treatment is conducted under some specific low oxygen partial pressure condition, unlike in the ambient air environment, only α-Al2O3 is formed with suppressing formation of metastable alumina. We also conducted transmission electron microscope (TEM) and XRD analysis of oxide scale formed after pre-oxidation heat treatment of the bond coat. As a result, we learned that if pre-oxidation is performed under specific oxygen partial pressure conditions, a monolithic α-Al2O3 layer is formed on the bond coat. We performed a durability evaluation test of TBC with the monolithic α-Al2O3 layer formed by pre-oxidation of the bond coat. An isothermal oxidation test confirmed that the growth of TGO in the TBC that had undergone pre-oxidation was suppressed more thoroughly than that in the TBC that had not undergone pre-oxidation. Cyclic thermal shock test by hydrogen burner rig was also carried out. TBC with the monolithic α-Al2O3 layer has resistance to >2000 cycle thermal shock at a load equivalent to that of actual gas turbine.

Funder

New Energy and Industrial Technology Development Organization

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference26 articles.

1. Environmental Degradation of Thermal-Barrier Coatings by Molten Deposits;MRS Bull.,2012

2. Mechanisms of Degradation and Failure in a Plasma-Deposited Thermal Barrier Coating;ASME J. Eng. Gas Turb. Power,1990

3. Modeling Oxidation Induced Stresses in Thermal Barrier Coating;Mater. Sci. A,1998

4. Method of Applying a Thermal Barrier Coating to a Superalloy Article and a Thermal Barrier Coating,1997

5. Long-Term Oxidation Tests on a Re-Containing MCrAlY Coating, Surface;Coat. Technol.,1997

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3