A Hybrid Electrochemical Magnetorheological Finishing Process for Surface Enhancement of Biomedical Implants

Author:

Rajput Atul Singh1,Das Manas1,Kapil Sajan1

Affiliation:

1. Indian Institute of Technology Guwahati Department of Mechanical Engineering, , Assam 781039 , India

Abstract

Abstract The proposed novel polishing method, hybrid electrochemical magnetorheological (H-ECMR) finishing, combines electrochemical reactions and mechanical abrasion on the workpiece surface to reduce finishing time. Moreover, H-ECMR finishing on the biomaterial surface produces a uniform, thick passive oxide layer to improve corrosion resistance. Herein, the electrolytic solution facilitates the chemical reaction and acts as a carrier medium for carbonyl iron particles (CIPs) in magnetorheological (MR) fluid. The synergic action of the two processes reduces the surface finishing time, which takes longer in the case of the conventional magnetorheological Finishing (MRF) process, as observed experimentally. The developed H-ECMR finishing process employs an electromagnet, maneuvering in situ surface quality variation by altering the magnetic field during finishing. The magnetic shield material (i.e., mu-metal) confines the bottom of the electromagnet core to restrict the magnetic field's leakage and provide a uniform and concentrated magnetic field at the polishing spot. The effectiveness of the H-ECMR process is evaluated based on various surface roughness parameters (i.e., average surface roughness (Ra), skewness (Rsk), and kurtosis (Rku)) and compared with the MRF process. A 96.4% reduction in Ra value is attained in the H-ECMR polishing compared to 49.6% in MRF for identical polishing time. Furthermore, an analytical model is developed to evaluate the final Ra attained from the developed H-ECMR polishing process and agrees well with the experimental results. The impact of different process parameters on surface roughness values is also analyzed. The electrochemical reaction forms a thick and unvarying passive layer on the Ti–6Al–4V surface as layer thickness increases to 78 nm from 8 nm. A case study on the femoral head of the Total Hip Arthroplasty (THA) for enhancement in the surface roughness and biocompatibility is performed through the developed H-ECMR polishing. The Ra value is decreased to 21.3 nm from 326 nm on the femoral head surface through the contour-parallel radial toolpath strategy.

Funder

Science and Engineering Research Board

Publisher

ASME International

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3