Blade Excitation in Pulse-Charged Mixed-Flow Turbocharger Turbines

Author:

Senn Stephan M.1,Seiler Martin1,Schaefer Ottmar1

Affiliation:

1. Research and Development Turbochargers, ABB Turbo Systems Ltd., CH-5401 Baden, Switzerland

Abstract

In this article, a fully three-dimensional computational modeling approach in the time and frequency domain is presented, which allows to accurately predicting fluid-structure interactions in pulse-charged mixed-flow turbocharger turbines. As part of the approach, a transient computational fluid mechanics analysis is performed based on the compressible inviscid Euler equations covering an entire engine cycle. The resulting harmonic orders of aerodynamic excitation are imposed in a forced response analysis of the respective eigenvector to determine effective stress amplitudes. The modeling approach is validated with experimental results based on various mixed-flow turbine designs. It is shown that the numerical results accurately predict the measured stress levels. The numerical approach can be used in the turbine design and optimization process. Aerodynamic excitation forces are the main reason for high cycle fatigue in turbocharger turbines and therefore a fundamental understanding is of key importance.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3