Multistage Compressor and Turbine Modeling for the Prediction of the Maximum Turbine Speed Resulting From Shaft Breakage

Author:

Haake M.1,Fiola R.1,Staudacher S.2

Affiliation:

1. Department of Engine Performance, Rolls-Royce Deutschland, Dahlewitz, Brandenburg 15827, Germany

2. Institute of Aeroengines and Propulsion, University of Stuttgart, Stuttgart, Baden-Württemberg 70569, Germany

Abstract

A mathematical model for the prediction of the maximum speed of a high pressure turbine following a shaft failure event was developed. The model predicts the high pressure compressor and ducting system pre- and poststall behaviors such as rotating stall and surge after the shaft breakage. The corresponding time-dependent high pressure turbine inlet conditions are used to calculate the turbine maximum speed, taking into account friction and blade and vane tip clearance variations as a result of the rearward movement of the turbine and destruction of the turbine blading. The compressor and ducting system is modeled by a one-dimensional, stage-by-stage approach. The approach uses a finite-difference numerical technique to solve the nonlinear system of equations for continuity, momentum, and energy including source terms for the compressible flow through inlet ducting, compressor, and combustor. The compressor blade forces and shaft work are provided by a set of quasisteady state stage characteristics being valid for prestall and poststall operations. The maximum turbine speed is calculated from a thermodynamic turbine stand-alone model, derived from a performance synthesis program. Friction and blade and vane tip clearance variations are determined iteratively from graphical data depending on the axial rearward movement of the turbine. The compressor and ducting system model was validated in prestall and poststall operation modes with measured high pressure compressor data of a modern two-shaft engine. The turbine model was validated with measured intermediate pressure shaft failure data of a three-shaft engine. The shaft failure model was applied on a modern two-shaft engine. The model was used to carry out a sensitivity study to demonstrate the impact of control system reactions on the resulting maximum high pressure turbine speed following a shaft failure event.

Publisher

ASME International

Subject

Mechanical Engineering

Reference25 articles.

1. European Aviation Safety Agency, 2003, Decision No. 2003/9/RM of the Executive Director of the Agency of 24 October 2003 on certification specifications, including airworthiness codes and acceptable means of compliance, for engines, CSE.

2. Dynamic Modelling of Gas Turbines

3. The Effect of Viscosity in Hypervelocity Impact Cratering;MacCormack

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3