Design and Validation of a Scale-Adaptive Filtering Technique for LRN Turbulence Modeling of Unsteady Flow

Author:

Gyllenram W.1,Nilsson H.1

Affiliation:

1. Division of Fluid Dynamics, Department of Applied Mechanics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden

Abstract

An adaptive low-pass filtering procedure for the modeled turbulent length and time scales is derived and applied to Wilcox’ original low reynolds number k-ω turbulence model. It is shown that the method is suitable for complex industrial unsteady flows in cases where full large eddy simulations (LESs) are unfeasible. During the simulation, the modeled length and time scales are compared to what can potentially be resolved by the computational grid and time step. If the modeled scales are larger than the resolvable scales, the resolvable scales will replace the modeled scales in the formulation of the eddy viscosity. The filtered k-ω model is implemented in an in-house computational fluid dynamics (CFD) code, and numerical simulations have been made of strongly swirling flow through a sudden expansion. The new model surpasses the original model in predicting unsteady effects and producing accurate time-averaged results. It is shown to be superior to the wall-adpating local eddy-viscosity (WALE) model on the computational grids considered here, since the turbulence may not be sufficiently resolved for an accurate LES. Because of the adaptive formulation, the filtered k-ω model has the potential to be successfully used in any engineering case where an LES is unfeasible and a Reynolds (ensemble) averaged Navier–Stokes simulation is insufficient.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3