Affiliation:
1. GE Global Research Center, Niskayuna, NY
2. GE Power & Water, Greenville, SC
Abstract
An introduction is given to a new rotating wheelspace test vehicle known as the GE Hot Gas Ingestion Rig (HGIR). This scaled 1.5 stage turbine rig is configured similar to a current generation heavy duty gas turbine. It has a broad spectrum of measurement capability, including radial and circumferential ports for CO2 measurements that are used to measure the sealing effectiveness from candidate rim seal geometries. Engine-matched conditions are presented in a non-dimensional form that demonstrate the value of this fully capable test facility, including static pressure signatures at stage 1 nozzle exit, exit Reynolds number, exit Mach number and rotational Reynolds number. This paper also provides details of the operating conditions and assessment of a thermal steady-state condition achieved consistently throughout each test. Part I of this two-part paper focuses on the geometric details of this new state-of-the-art wheelspace rig, the measurement capabilities currently available and planned, and the results from the baseline geometry. The test data from this test vehicle are used to validate reduced order models, including unsteady CFD models. Details of the CFD modeling and validation are presented in the Part II paper Ding et al. [1]. Measurement uncertainties for all key parameters as well as the repeatability of the test rig to reproduce test conditions are presented to demonstrate the rigor taken in the design and operation of this testing facility.
Publisher
American Society of Mechanical Engineers
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献