The Effect of Intrinsic Instabilities on Effective Flame Speeds in Under-Resolved Simulations of Lean Hydrogen–Air Flames

Author:

Katzy Peter1,Hasslberger Josef2,Boeck Lorenz R.2,Sattelmayer Thomas2

Affiliation:

1. Lehrstuhl für Thermodynamik, Fakultät für Maschinenwesen, Technische Universität München, Garching 85748, Germany e-mail:

2. Lehrstuhl für Thermodynamik, Fakultät für Maschinenwesen, Technische Universität München, Garching 85748, Germany

Abstract

The presented work aims to improve computational fluid dynamics (CFD) explosion modeling for lean hydrogen–air mixtures on under-resolved grids. Validation data are obtained from an entirely closed laboratory-scale explosion channel (GraVent facility). Investigated hydrogen–air concentrations range from 6 to 19 vol %. Initial conditions are p = 0.1 MPa and T = 293 K. Two highly time-resolved optical measurement techniques are applied simultaneously: (1) 10 kHz shadowgraphy captures line-of-sight integrated macroscopic flame propagation and (2) 20 kHz planar laser-induced fluorescence of the OH radical (OH-PLIF) resolves microscopic flame topology without line-of-sight integration. This paper presents the experiment, measurement techniques, data evaluation methods, and simulation results. The evaluation methods encompass the determination of flame tip velocity over distance and a detailed time-resolved quantification of the flame topology based on OH-PLIF images. One parameter is the length of wrinkled flame fronts in the OH-PLIF plane obtained through automated postprocessing. It reveals the expected enlargement of flame surface area by instabilities on a microscopic level. A strong effect of mixture composition is observed. Simulations based on the new model formulation, incorporating the microscopic enlargement of the flame front, show a promising behavior, where the impact of the augmented flame front on the observed flame front velocities can be detected.

Publisher

ASME International

Subject

Nuclear Energy and Engineering,Radiation

Reference27 articles.

1. On the Theory of Slow Combustion;Acta Physicochim. URSS,1944

2. A Numerical Model of Premixed Turbulent Combustion of Gases;Chem. Phys. Rep.,1995

3. Investigation of a Turbulent Flame Speed Closure Approach for Premixed Flame Calculations;Combust. Sci. Technol.,2000

4. An Efficient Computational Model for Premixed Turbulent Combustion at High Reynolds Numbers Based on a Turbulent Flame Speed Closure;ASME J. Eng. Gas Turbines Power,1998

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3