A Supercritical CO2 Gas Turbine Power Cycle for Next-Generation Nuclear Reactors

Author:

Dostal Vaclav1,Driscoll Michael J.1,Hejzlar Pavel1,Todreas Neil E.1

Affiliation:

1. Massachusetts Institute of Technology, Cambridge, MA

Abstract

Although proposed more than 35 years ago, the use of supercritical CO2 as the working fluid in a closed circuit Brayton cycle has so far not been implemented in practice. Industrial experience in several other relevant applications has improved prospects, and its good efficiency at modest temperatures (e.g., ∼45% at 550°C) make this cycle attractive for a variety of advanced nuclear reactor concepts. The version described here is for a gas-cooled, modular fast reactor. In the proposed gas-cooled fast breeder reactor design of present interest, CO2 is also especially attractive because it allows the use of metal fuel and core structures. The principal advantage of a supercritical CO2 Brayton cycle is its reduced compression work compared to an ideal gas such as helium: about 15% of gross power turbine output vs. 40% or so. This also permits the simplification of use of a single compressor stage without intercooling. The requisite high pressure (∼20 MPa) also has the benefit of more compact heat exchangers and turbines. Finally, CO2 requires significantly fewer turbine stages than He, its principal competitor for nuclear gas turbine service. One disadvantage of CO2 in a direct cycle application is the production of N-16, which will require turbine plant shielding (albeit much less than in a BWR). The cycle efficiency is also very sensitive to recuperator effectiveness and compressor inlet temperature. It was found necessary to split the recuperator into separate high- and low-temperature components, and to employ intermediate recompression, to avoid having a pinch-point in the cold end of the recuperator. Over the past several decades developments have taken place that make the acceptance of supercritical CO2 systems more likely: supercritical CO2 pipelines are in use in the western US in oil-recovery operations; 14 advanced gas-cooled reactors (AGR) are employed in the UK at CO2 temperatures up to 650°C; and utilities now have experience with Rankine cycle power plants at pressures as high as 25 MPa. Furthermore, CO2 is the subject of R&D as the working fluid in schemes to sequester CO2 from fossil fuel combustion and for refrigeration service as a replacement for CFCs.

Publisher

ASMEDC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3