Model- and Information Theory-Based Diagnostic Method for Induction Motors

Author:

Lee Sanghoon1,Bryant Michael D.1,Karlapalem Lalit1

Affiliation:

1. Department of Mechanical Engineering, The University of Texas, Austin, Texas 78712-1063

Abstract

Introduced is a model-based diagnostic system for motors, that also employs concepts of information theory as a health metric. From an existing bond graph of a squirrel cage induction motor, state equations were extracted and simulations performed. Simulated were various cases, including the response of an ideal motor, which functions perfectly to designer’s specifications, and motors with shorted stator coils, a bad phase capacitor, and broken rotor bars. By constructing an analogy between the motor and a communication channel, Shannon’s theorems of information theory were applied to assess functional health. The principal health metric is the channel capacity, which is based on integrals of signal-to-noise ratios. The channel capacity monotonically reduces with degradation of the system, and appears to be an effective discriminator of motor health and sickness. The method was tested via simulations of a three-phase motor; and for experimental verification, a two-phase induction motor was modeled and tested. The method was able to predict impending functional failure, significantly in advance.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3