Affiliation:
1. Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
Abstract
Quantitative analytical tools based on the second law of thermodynamics provide insight into the complex optimization tradeoffs encountered in the design of a combined cycle. These tools are especially valuable when considering approaches beyond the existing body of experience, whether in cycle configuration or in gas turbine cooling technology. A framework for such analysis was provided by the author [1-3] using simplified, constant-property models. In this paper, this theme is developed to include actual chemical and thermodynamic properties as well as relevant practical design details reflecting current engineering practice. The second-law model is applied to calculate and provide a detailed breakdown of the sources of inefficiency of a combined cycle. Stage-by-stage turbine cooling flow and loss analysis calculations are performed using the GASCAN program and examples of the resulting loss breakdowns presented. It is shown that the dominant interaction governing the variation of cycle efficiency with turbine inlet temperature is that between combustion irreversibility and turbine cooling losses. Compressor and pressure-drop losses are shown to be relatively small. A detailed analysis and loss breakdown of the steam bottoming cycle is presented in Part 2 of this paper.
Subject
Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献