Experimental Investigation on the Lumped Model of Nonlinear Rocker–Rocker Mechanism With Flexible Coupler

Author:

Chang Ren-Jung1,Wang Ying-Chuan1

Affiliation:

1. Department of Mechanical Engineering, National Cheng Kung University, No. 1 University Road, Tainan 70101, Taiwan, China

Abstract

Abstract The nonlinear and flexible effects on the continuum dynamics of rocker–rocker flexible mechanism are investigated. An experimental rocker–rocker mechanism with flexible coupler was first established. The flexible mechanism which incorporats the buckling motion of flexible coupler is acted as a double-well oscillator. The mechanism was actuated by electromagnet and measured by charge-coupled device (CCD) visual system. Rich dynamic behavior such as complex period, amplitude modulation, and chaos in the intrawell and interwell oscillations were observed. For investigating nonlinear dynamics, the dynamic behavior was analyzed through identification of linear and nonlinear lumped models. Both time-domain and frequency-domain approaches were carried out in identifying linear time-invariant model. Averaging multiple models were employed for the time-domain identification of linear model. The identification of nonlinear model was undertaken by the extension of the two-stage linear identification scheme. The response identification in input space was analyzed by utilizing semi-analytical harmonic balance method. The important boundary of chaotic response in operation was investigated by the proposed energy-well criterion, Melnikov's criterion, Moon's criterion, as well as Szemplińska-Stupnicka and Rudowski's criterion.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimization research on dynamic behavior for mechanism with clearance joint and wear;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2024-02-18

2. Design of Bionic Knee Joint Structure Based on the Dynamics of Double Rocker Mechanism;Advanced Intelligent Technologies for Industry;2022

3. Integrate-and-Differentiate Approach to Nonlinear System Identification;Mathematics;2021-11-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3