Use of Convolutional Neural Network Image Classification and High-Speed Ion Probe Data Toward Real-Time Detonation Characterization in a Water-Cooled Rotating Detonation Engine

Author:

Johnson Kristyn B.12,Ferguson Donald H.3,Nix Andrew C.45

Affiliation:

1. Thermal Sciences Team, National Energy Technology Laboratory , Morgantown, WV 26507 ;

2. NETL Support Contractor , Morgantown, WV 26505

3. Thermal Sciences Team, National Energy Technology Laboratory , Morgantown, WV 26507

4. Department of Mechanical and Aerospace Engineering, West Virginia University , Morgantown, WV 26505 ; , Oak Ridge, TN 37831

5. Oak Ridge Institute for Science and Education , Morgantown, WV 26505 ; , Oak Ridge, TN 37831

Abstract

Abstract As rotating detonation engines (RDEs) progress in maturity, the importance of monitoring advancements toward development of active control becomes more critical. Experimental RDE data processing at time scales which satisfy real-time diagnostics will likely require the use of machine learning. This study aims to develop and deploy a novel real-time monitoring technique capable of determining detonation wave number, direction, frequency, and individual wave speeds throughout experimental RDE operational windows. To do so, the diagnostic integrates image classification by a convolutional neural network (CNN) and ionization current signal analysis. Wave mode identification through single-image CNN classification bypasses the need to evaluate sequential images and offers instantaneous identification of the wave mode present in the RDE annulus. Real-time processing speeds are achieved due to low data volumes required by the methodology, namely one short-exposure image and a short window of sensor data to generate each diagnostic output. The diagnostic acquires live data using a modified experimental setup alongside Pylon and PyDAQmx libraries within a python data acquisition environment. Lab-deployed diagnostic results are presented across varying wave modes, operating conditions, and data quality, currently executed at 3–4 Hz with a variety of iteration speed optimization options to be considered as future work. These speeds exceed that of conventional techniques and offer a proven structure for real-time RDE monitoring. The demonstrated ability to analyze detonation wave presence and behavior during RDE operation will certainly play a vital role in the development of RDE active control, necessary for RDE technology maturation toward industrial integration.

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3