Unstructured Adaptive Triangular Mesh Generation Techniques and Finite Volume Schemes for the Air Bearing Problem in Hard Disk Drives

Author:

Wu Lin1,Bogy D. B.1

Affiliation:

1. Computer Mechanics Laboratory, Department of Mechanical Engineering, University of California, Berkeley, CA 94720

Abstract

Unstructured adaptive triangular mesh generation techniques and vertex based finite volume schemes that suit slider air bearing simulation of hard disk drives are constructed and implemented. Different refinement and adaptation techniques are used to generate several levels of good quality mesh over sliders with complex rail shapes. At each level, either one geometrical or one physical property of the problem is captured. A group of implicit vertex based finite volume schemes is first constructed. The resulting simultaneous linear algebraic equations are solved iteratively by the Gauss-Seidel method. Unconditional stability of the scheme is achieved. In addition, we present a non-nested full approximation storage (FAS) multi-grid algorithm that can significantly speed up the convergence rate of the implicit finite volume schemes. The steady state flying attitude is obtained by a quasi-Newton iteration method. [S0742-4787(00)01804-X]

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3