Flow Control Over a Finite Wall-Mounted Square Cylinder by Using Multiple Plasma Actuators

Author:

Yousif Mustafa Z.1,Yang Yifang1,Zhou Haifeng1,Mohammadikarachi Arash1,Yu Linqi1,Zhang Meng1,Lim Hee-Chang1

Affiliation:

1. School of Mechanical Engineering, Pusan National University , 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, South Korea

Abstract

Abstract The present study aims to investigate the effectiveness of plasma actuators in controlling the flow around a finite wall-mounted square cylinder (FWMSC) with a longitudinal aspect ratio of 4. The test is conducted in a small-scale closed return-type wind tunnel. The Reynolds number of the experiments, Red, is 500 based on the width of the bluff body and the freestream velocity. The plasma actuators are installed on the top surface and the rear surface of the square cylinder. The induced flow velocities of the plasma actuators are modulated by adjusting the operating voltage and frequency of the high-voltage generator. In this work, particle image velocimetry (PIV) is used to obtain the velocity fields. Furthermore, force calculations are conducted to investigate the effect of using plasma actuators with different driving voltages on the drag force. Our results show that the plasma actuators can successfully suppress flow separation and reduce the turbulent kinetic energy (TKE) in the wake. A correlation between the drag coefficient and the operating voltage of the power generator is also revealed, and the mean drag coefficient is found to decrease with increasing imposing voltage. The plasma actuators can enhance the momentum exchange and the interactive behavior between the shear layer and the flow separation region, resulting in flow reattachment at the free end and shrinkage of the recirculation zone in the near-wake region of the bluff body. Overall, the present study demonstrates the practical effectiveness of using plasma actuators for flow control around FWMSC.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3