A Two-Way Coupled Polydispersed Two-Fluid Model for the Simulation of Air Entrainment Beneath a Plunging Liquid Jet

Author:

Ma Jingsen1,Oberai Assad A.1,Drew Donald A.1,Lahey Richard T.1

Affiliation:

1. Center for Multiphase Research, Rensselaer Polytechnic Institute, Troy, NY 12180

Abstract

Plunging liquid jets are commonly encountered in nature and are widely used in industrial applications (e.g., in waterfalls, waste-water treatment, the oxygenation of chemical liquids, etc.). Despite numerous experimental studies that have been devoted to this interesting problem, there have been very few two-phase flow simulations. The main difficulty is the lack of a quantitative subgrid model for the air entrainment process, which plays a critical role in this problem. In this paper, we present in detail a computational multiphase fluid dynamics (CMFD)-based approach for analyzing this problem. The main ingredients of this approach are a comprehensive subgrid air entrainment model that predicts both the rate and location of the air entrainment and a two-fluid transport model, in which bubbles of different sizes are modeled as a continuum fluid. Using this approach, a Reynolds-averaged Navier Stokes (RaNS) two-way coupled two-phase flow simulation of a plunging liquid jet with a diameter of 24 mm and a liquid jet velocity around 3.5 m/s was performed. We have analyzed the simulated void fraction and bubble count rate profiles at three different depths beneath the average free surface and compared them with experimental data in literature. We observed good agreement with data at all locations. In addition, some interesting phenomena on the different movements of bubbles with different sizes were observed and discussed.

Publisher

ASME International

Subject

Mechanical Engineering

Reference69 articles.

1. The Mechanism of Air Bubble Entrainment in Self-Aerated Flow;Volkart;Int. J. Multiphase Flow

2. Air Entrainment by Plunging Jets;Sene;Chem. Eng. Sci.

3. Air Entrapment and Air Bubble Dispersion at Two-Dimensional Plunging Water Jets;Brattberg;Chem. Eng. Sci.

4. An Experimental Study of Air Entrainment Characteristics of the Hydraulic Jump;Rajaratnam;J. Inst. Eng. (India), Part AG

5. Effect of Turbulence Intensity on the Rate of Air Entrainment by Plunging Water Jets;Ervine

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3