Affiliation:
1. Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, NY 14260
Abstract
Abstract
One of the current challenges for the additive manufacturing (AM) industry lies in providing component designs compatible with the AM manufacturability and constraints without compromising the component structural functionalities. To address this challenge, we present an automated correction system that provides geometrically feasible designs for additive processes by applying locally effective modifications while avoiding substantial changes in the current designs. Considering a minimum printable feature size from the process parameters, this system identifies the problematic features in an infeasible part’s design using a holistic geometric assessment algorithm. Based on the obtained manufacturability feedback, the system then corrects the detected problematic regions using a set of appropriate redesign solutions through an automated procedure. In addition, to reduce the difference between the current and modified part geometries, a novel optimization model for build orientation is presented. By using this model, one can identify appropriate orientations for obtaining a feasible design with a minimal amount of corrections while also reducing the postprocessing effort by minimizing the area of contact with the support structure. The functionalities of the presented correction system and the optimization model are illustrated using a number of case studies with varying geometries. The computational performance of the system and an experimental validation are also presented to demonstrate the effectiveness of the implemented detection and modification approaches.
Subject
Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献