Numerical Investigation of Heat Transfer in Rectangular Microchannels Under H2 Boundary Condition During Developing and Fully Developed Laminar Flow

Author:

Dharaiya V. V.,Kandlikar S. G.1

Affiliation:

1. Thermal Analysis, Microfluidics and Fuel Cell Laboratory, Rochester Institute of Technology, Rochester, NY 14623, USA

Abstract

Study of fluid flow characteristics at microscale is gaining importance with shrinking device sizes. Better understanding of fluid flow and heat transfer in microchannels will have important implications in electronic chip cooling, heat exchangers, MEMS, and microfluidic devices. Due to short lengths employed in microchannels, entrance header effects can be significant and need to be investigated. In this work, three dimensional model of microchannels, with aspect ratios (α = a/b) ranging from 0.1 to 10, are numerically simulated using CFD software tool fluent. Heat transfer effects in the entrance region of microchannel are presented by plotting average Nusselt number as a function of nondimensional axial length x*. The numerical simulations with both circumferential and axial uniform heat flux (H2) boundary conditions are validated for existing data set for four wall heat flux case. Large numerical data sets are generated in this work for rectangular cross-sectional microchannels with heating on three walls, two opposing walls, one wall, and two adjacent walls under H2 boundary condition. This information can provide better understanding and insight into the transport processes in the microchannels. Although the results are seen as relevant in microscale applications, they are applicable to any sized channels. Based on the numerical results obtained for the whole range, generalized correlations for Nusselt numbers as a function of channel aspect ratio are presented for all the cases. The predicted correlations for Nusselt numbers can be very useful resource for the design and optimization of microchannel heat sinks and other microfluidic devices.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference23 articles.

1. High-Performance Heat Sinking for VLSI;Tuckerman;IEEE Electron Dev. Lett.

2. Measurement of the Heat Transfer Characteristics of Gas Flow in Fine Channel Heat Exchangers Used for Microminiature Refrigerators;Wu;Cryogenics

3. Fluid Flow and Heat Transfer in Microtubes, Micromechanical Sensors, Actuators, and Systems;Choi

4. An Experimental Investigation of Single-Phase Forced Convection in Microchannels;Adams;Int. J. of Heat Mass Transfer

5. An Experimental and Theoretical Investigation of Fluid Flow and Heat Transfer in Microtubes;Yu

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3