A Demonstration of Artificial Neural Networks Based Data Mining for Gas Turbine Driven Compressor Stations

Author:

Botros K. K.1,Kibrya G.2,Glover A.2

Affiliation:

1. NOVA Research & Technology Corporation, Calgary, AB, Canada

2. TransCanada Pipelines Ltd., Calgary, AB, Canada

Abstract

This paper presents a successful demonstration of application of Neural networks to perform various data mining functions on an RB211 gas turbine driven compressor station. Radial Basis Function networks were optimized and were capable of performing the following functions: a) Backup of critical parameters, b) Detection of sensor faults, c) Prediction of complete engine operating health with few variables, and d) Estimation of parameters that cannot be measured. A Kohonen SOM technique has also been applied to recognize the correctness and validity of any data once the network is trained on a good set of data. This was achieved by examining the activation levels of the winning unit on the output layer of the network. Additionally, it would also be possible to determine the suspicious, faulty or corrupted parameter(s) in the cases which are not recognized by the network by simply examining the activation levels of the input neurons.

Publisher

American Society of Mechanical Engineers

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3