Mechanical Characterization of Porcine Skin Starting Material

Author:

Zhang Bin1,Chester Shawn A.1,Nadimpalli Siva P. V.2,Suriano Justin T.1,Theis David P.3,Lieber Samuel C.1

Affiliation:

1. Department of Mechanical Engineering, New Jersey Institute of Technology, Newark, NJ 07102

2. Department of Mechanical Engineering, Michigan State University, East Lansing, MI 48824

3. Midwest Research Swine, LLC, 31009 645th Avenue, Gibbon, MN 55335

Abstract

Abstract Porcine skin has been used as a starting material in several released mesh medical devices. Although this controlled animal derived material is prevalent in tissue engineered medical devices, little is known about its mechanical properties. This study mechanically characterized porcine skin starting material (PSSM), provided by Midwest Research Swine. Uniaxial tensile tests were performed on samples cut from different regions (back and neck) and orientations (parallel and perpendicular to the spine) on the PSSM. The stress–stretch relationship was determined for each sample utilizing a load frame equipped with a Digital Image Correlation measurement system. The PSSM skin demonstrates the classic nonlinear and linear regions seen in other biologic tissues. A bilinear curve fit method was used to separate the nonlinear and linear regions of the tensile curve, and each region was analyzed with an Ogden and linear model, respectively. The results show that the tensile curve is better described with this method as opposed to analyzing the full curve with one model. A comparison was made between samples cut from the different regions and orientations. There were significant differences between the failure measures and mechanical indices from the two regions, and on average the back behaved anisotropically and the neck isotropically. The PSSM mechanical properties from this study could serve as a preliminary guide for those exploring devices or processes in the tissue engineering field. The methods demonstrated in this study could also help characterize other biologic materials, and be used toward the development of tissue specific industrial standards.

Publisher

ASME International

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3