A New Design for Tip Injection in Transonic Axial Compressors

Author:

Beheshti Behnam H.1,Ghorbanian Kaveh2,Farhanieh Bijan2,Teixeira Joao A.3,Ivey Paul C.3

Affiliation:

1. ETH Zurich, Zurich, Switzerland

2. Sharif University of Technology, Tehran, Iran

3. Cranfield University, Cranfield, UK

Abstract

This paper presents a state of the art design for the blade tip injection. The design includes the means to inject high-pressure gas jet directly into a circumferential casing groove formed in the shroud adjacent to the blade tip. The casing groove is positioned over the blade tip and exceeds 30% of the blade axial chord beyond the impeller to both upstream and downstream directions. In order to validate the multi block model used in the tip gap region, main flow characteristics are verified with the experimental data for smooth casing with a design clearance of 0.5% span. Three arbitrary mass flow rates (1.75%, 2.45%, and 4.35% of choked mass flow) have been studied. The results indicate remarkable advantageous effects on the compressor stability margin. Further, compared to classical design for tip injection, the current design can significantly improve the compressor stall margin due to direct injection of flow. An increase of the injected air may enhance the stall margin improvement. Furthermore, results for injection at different angles, shows that the compressor stability margin reaches a maximum when the bleed air in the relative coordinates is aligned with the mean camber line of the blade leading edge. The main objective of this research is to present an improved design for tip injection as well as to determine its effect on the stability enhancement of the compressor. The current research also provides guidelines to an optimum design of tip injection.

Publisher

ASMEDC

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3