Aging and Fatigue of Aerosol Jet-Printed Nano-Ag Traces on Flexible Substrate

Author:

Raj Arun1,Sivasubramony Rajesh Sharma1,Yadav Manu1,Thekkut Sanoop1,Khinda Gurvinder Singh1,Alhendi Mohammed1,Poliks Mark D.1,Borgesen Peter1

Affiliation:

1. Department of Systems Science and Industrial Engineering, Binghamton University, Binghamton, NY 13902

Abstract

Abstract Conducting traces on a flexible substrate often have to survive significant and repeated deformation, making their fatigue resistance and the stability of it during long-term storage and use a potential concern. The question of stability is obvious in the case of, for example, screen or ink jet-printed traces where the organic matrix remains a critical part of the structure. We show it also to be important for nano-Ag traces that are sintered to ensure metallic bonding between the particles while eliminating most of the organics. We also show conventional accelerated aging tests to be potentially confusing or misleading for such traces, depending among other on practical limitations on sintering conditions. Examples are presented of how the fatigue resistance of application relevant aerosol jet-printed nano-Ag traces may degrade relatively rapidly at moderate temperatures. Even after “optimized” sintering at a much higher temperature subsequent aging at 75 °C for only 100 h led to an order of magnitude reduction in the fatigue life in subsequent mild cycling. The rate of degradation is certain to vary with the design and the ink used as well as with sintering conditions, making it important to account for it all in materials selection, process optimization, and assessments of practical life.

Funder

Air Force Research Laboratory

Publisher

ASME International

Subject

Electrical and Electronic Engineering,Computer Science Applications,Mechanics of Materials,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3