Hydrogen Production by Carbon-Catalyzed Methane Decomposition Via Thermogravimetry

Author:

Shilapuram Vidyasagar1,Ozalp Nesrin2

Affiliation:

1. Chemical Engineering Department, National Institute of Technology, Warangal, Warangal, Telangana 506004, India e-mail:

2. Department of Mechanical and Industrial Engineering, University of Minnesota Duluth, Duluth, MN 55812 e-mail:

Abstract

Hydrogen is a high energy content fuel and methane is currently the most preferred feedstock for hydrogen production. Direct thermal splitting of methane offers the cleanest technique to produce hydrogen and carbon as coproduct fuel. Carbonaceous catalysts have significant impact on methane to hydrogen conversion. This study presents thermogravimetric experiment results of carbon-catalyzed methane decomposition using commercial catalyst. Results are presented in terms of carbon formation rate, amount of carbon deposition on the catalyst, sustainability factor, catalyst activity, and kinetics of the reaction. The results show that weight gain because of carbon formation depends on reaction temperature, methane volume percent in the feed gas, and nature of the carbonaceous catalyst. It was observed that the reaction rate was dominant at the beginning, and deactivation rate was dominant toward the end of reaction. X-ray diffraction (XRD) and scanning electron microscopic (SEM) analysis of deactivated catalytic samples show decreasing disorder with increasing reaction temperature. Finally, performance comparison of activated carbons (ACs) studied in literature shows that activated carbon sample chosen in this study outperforms in terms of carbon deposition, reaction rate, carbon weight gain, and sustainability factor.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference30 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3