Discrete Element Modeling of Railway Ballast for Studying Railroad Tamping Operation

Author:

Dama Nilesh1,Ahmadian Mehdi1

Affiliation:

1. Virginia Tech, Blacksburg, VA

Abstract

Abstract The dynamic behavior of ballast particles during track tamping is studied by developing a computer simulation model using the Discrete Element Model (DEM) method. The simulation model is developed in a commercially available DEM software called PFC3D (Particle Flow Code 3D). The study primarily evaluates a complete tamping cycle as defined by insertion, squeeze, hold, and withdrawal. Using a Taguchi approach, the effect of Tine motion’s frequency and amplitude, insertion velocity, and squeeze velocity are evaluated on tamping effectiveness. The compactness of the ballast particles, as defined by the average number of contacts per particle (referred to “Coordination Number”) is used as a measure of the effectiveness of tamping. Setting up the DEM model and important elements such as selection and calibration of particle shapes, ballast mechanical properties, contact model, and parameters governing the contact force models are described in detail. The tamping process is evaluated using a half-track layout with a highly modular code that enables a high degree of adjustability to allow control of all parameters for improved simulation flexibility. A parametric study is performed to find the best values of tine motion parameters for improving tamping efficiency. A performance comparison is made between linear and elliptical tamping. The results indicate that smaller squeeze and release velocities of the tines yield better compaction. Of course, reducing the velocities would result in increased tamping time. Additionally, the results indicate that the linear motion of the tines potentially result in better compaction than elliptical motion, although the latter may require less insertion force (power) and cause less ballast damage.

Publisher

American Society of Mechanical Engineers

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3