Advances in Deepwater Steel Catenary Riser Technology State-of-the-Art: Part II—Analysis

Author:

Song Ruxin1,Stanton Paul1

Affiliation:

1. Technip USA, Houston, TX

Abstract

The Steel Catenary Riser (SCR) concept offers advantages over other riser concepts and has been widely deployed worldwide. The first deepwater SCR was installed in the Gulf of Mexico in 1994. Since then, more than 100 SCRs have been installed for many types of deepwater floaters (Spars, TLPs, SEMIs, and FPSOs) in the deepwater fields of West of Africa, the Gulf of Mexico (GoM), and Offshore Brazil. As the second of two companion papers, this paper presents the state-of-the-art of key analysis techniques of deepwater SCRs while the first paper addresses the design methodology [R. Song, P. Stanton, Ref. 4]. First of all, the procedure for analysis of deepwater SCRs is discussed and presented in more detail than given in the first paper and is also illustrated in an analysis flowchart. Wave theory applicable to deepwater SCR analysis and time domain vs. frequency domain analysis approaches are described and discussed. More focus is given to the strength analysis including discussion and comparison of regular wave and random wave approaches. Attention is paid to the vortex induced vibration (VIV) analysis including discussion of modal response analysis and VIV parameter selections. For SCRs on semisubmersibles and FPSOs, vessel heave-induced VIV needs to be taken into account, and a corresponding time-domain approach is presented. Similarly, for Spars and deep draft semisubmersibles, vortex-induced motion (VIM) fatigue damage of SCRs is discussed in more detail. Particular attention is also given to the analysis of SCR compression in the touch-down zone (TDZ) and corresponding acceptance criteria are presented. The application of fracture mechanics to engineering criticality assessment (ECA) is explored. Two examples of deepwater SCRs corresponding to a semi and a Spar are given to illustrate the presented methodology.

Publisher

ASMEDC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3