Turbine Airfoil Design Optimization

Author:

Goel Sanjay1,Cofer John I.1,Singh Hardev1

Affiliation:

1. General Electric Company, Schenectady, NY

Abstract

A new blade design methodology, which allows designers to react rapidly to changes in functional requirements of turbines and transition quickly from concept to design, has been discussed in this paper. This methodology reduces the design cycle time by creating a three-dimensional model of the blade, through concurrent design of multiple two-dimensional blade sections. An efficient direct design procedure has been developed by coupling direct optimization techniques with two-dimensional aerodynamic analysis codes. A method for interpreting the flowfield solution to compute the airfoil quality has been developed and is used to compute the objective function during optimization. Aerodynamic, mechanical and geometry constraints are imposed on the design to ensure that the optimized design meets feasibility requirements of all engineering disciplines. During the design optimization process, the designers’ interactions are simulated through use of rules that are based on designer heuristics. This procedure is used for the design of a high pressure, steam turbine blade; the results are discussed in this paper.

Publisher

American Society of Mechanical Engineers

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3